Categorizing Grassland Vegetation with Full-Waveform Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types
نویسندگان
چکیده
There is increasing demand for reliable, high-resolution vegetation maps covering large areas. Airborne laser scanning data is available for large areas with high resolution and supports automatic processing, therefore, it is well suited for habitat mapping. Lowland hay meadows are widespread habitat types in European grasslands, and also have one of the highest species richness. The objective of this study was to test the applicability of airborne laser scanning for vegetation mapping of different grasslands, including the Natura 2000 habitat type lowland hay meadows. Full waveform leaf-on and leaf-off point clouds were collected from a Natura 2000 site in Sopron, Hungary, covering OPEN ACCESS Remote Sens. 2014, 6 8057 several grasslands. The LIDAR data were processed to a set of rasters representing point attributes including reflectance, echo width, vegetation height, canopy openness, and surface roughness measures, and these were fused to a multi-band pseudo-image. Random forest machine learning was used for classifying this dataset. Habitat type, dominant plant species and other features of interest were noted in a set of 140 field plots. Two sets of categories were used: five classes focusing on meadow identification and the location of lowland hay meadows, and 10 classes, including eight different grassland vegetation categories. For five classes, an overall accuracy of 75% was reached, for 10 classes, this was 68%. The method delivers unprecedented fine resolution vegetation maps for management and ecological research. We conclude that high-resolution full-waveform LIDAR data can be used to detect grassland vegetation classes relevant for Natura 2000.
منابع مشابه
Mapping Natura 2000 Habitat Conservation Status in a Pannonic Salt Steppe with Airborne Laser Scanning
Natura 2000 Habitat Conservation Status is currently evaluated based on fieldwork. However, this is proving to be unfeasible over large areas. The use of remote sensing is increasingly encouraged but covering the full range of ecological variables by such datasets and ensuring compatibility with the traditional assessment methodology has not been achieved yet. We aimed to test Airborne Laser Sc...
متن کاملFull-Waveform Airborne Laser Scanning in Vegetation Studies—A Review of Point Cloud and Waveform Features for Tree Species Classification
In recent years, small-footprint full-waveform airborne laser scanning has become readily available and established for vegetation studies in the fields of forestry, agriculture and urban studies. Independent of the field of application and the derived final product, each study uses features to classify a target object and to assess its characteristics (e.g., tree species). These laser scanning...
متن کاملTowards Detecting Swath Events in TerraSAR-X Time Series to Establish NATURA 2000 Grassland Habitat Swath Management as Monitoring Parameter
Spatial monitoring tools are necessary to respond to the threat of global biodiversity loss. At the European scale, remote sensing tools for NATURA 2000 habitat monitoring have been requested by the European Commission to fulfill the obligations of the EU Habitats Directive. This paper introduces a method by which swath events in semi-natural grasslands can be detected from multi-temporal Terra...
متن کاملObject-based Change Detection Analysis for the Monitoring of Habitats in the Framework of the Natura 2000 Directive with Multi- Temporal Satellite Data
Multi-temporal and multi-sensor satellite information can supply valuable information about vegetation species, especially in the context of biodiversity. Main focus of the presented project CARE-X is the development of a remote sensing technology for the European monitoring of NATURA 2000 areas. For this type of monitoring, information about the structure and composition of the existing vegeta...
متن کاملLidar Waveform Classification Using Self-organizing Map
Most commercial LIDAR systems temporarily record the entire laser pulse echo signal, called full-waveform, as a function of time to extract the return pulses at data acquisition level in real-time; typically up to 4-5 returns. The new generation of airborne laser scanners, the full-waveform LiDAR systems, are not only able to digitize but can record the entire backscattered signal of each emitt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014